Class 
Use 
SUMMARY: NESTED | FIELD | CONSTR | METHOD      DETAIL: FIELD | CONSTR | METHOD
FlexDoc/Javadoc 2.0
Demo Java Doc

java.base / java.util.concurrent
Class RecursiveAction
java.lang.Object
  java.util.concurrent.ForkJoinTask<Void>
      java.util.concurrent.RecursiveAction
All Implemented Interfaces:
Serializable, Future<Void>

public abstract class RecursiveAction
extends ForkJoinTask<Void>
A recursive resultless ForkJoinTask. This class establishes conventions to parameterize resultless actions as Void ForkJoinTasks. Because null is the only valid value of type Void, methods such as join always return null upon completion.

Sample Usages. Here is a simple but complete ForkJoin sort that sorts a given long[] array:

 
 static class SortTask extends RecursiveAction {
   final long[] array; final int lo, hi;
   SortTask(long[] array, int lo, int hi) {
     this.array = array; this.lo = lo; this.hi = hi;
   }
   SortTask(long[] array) { this(array, 0, array.length); }
   protected void compute() {
     if (hi - lo < THRESHOLD)
       sortSequentially(lo, hi);
     else {
       int mid = (lo + hi) >>> 1;
       invokeAll(new SortTask(array, lo, mid),
                 new SortTask(array, mid, hi));
       merge(lo, mid, hi);
     }
   }
   // implementation details follow:
   static final int THRESHOLD = 1000;
   void sortSequentially(int lo, int hi) {
     Arrays.sort(array, lo, hi);
   }
   void merge(int lo, int mid, int hi) {
     long[] buf = Arrays.copyOfRange(array, lo, mid);
     for (int i = 0, j = lo, k = mid; i < buf.length; j++)
       array[j] = (k == hi || buf[i] < array[k]) ?
         buf[i++] : array[k++];
   }
 }
You could then sort anArray by creating new SortTask(anArray) and invoking it in a ForkJoinPool. As a more concrete simple example, the following task increments each element of an array:
 
 class IncrementTask extends RecursiveAction {
   final long[] array; final int lo, hi;
   IncrementTask(long[] array, int lo, int hi) {
     this.array = array; this.lo = lo; this.hi = hi;
   }
   protected void compute() {
     if (hi - lo < THRESHOLD) {
       for (int i = lo; i < hi; ++i)
         array[i]++;
     }
     else {
       int mid = (lo + hi) >>> 1;
       invokeAll(new IncrementTask(array, lo, mid),
                 new IncrementTask(array, mid, hi));
     }
   }
 }

The following example illustrates some refinements and idioms that may lead to better performance: RecursiveActions need not be fully recursive, so long as they maintain the basic divide-and-conquer approach. Here is a class that sums the squares of each element of a double array, by subdividing out only the right-hand-sides of repeated divisions by two, and keeping track of them with a chain of next references. It uses a dynamic threshold based on method getSurplusQueuedTaskCount, but counterbalances potential excess partitioning by directly performing leaf actions on unstolen tasks rather than further subdividing.

 
 double sumOfSquares(ForkJoinPool pool, double[] array) {
   int n = array.length;
   Applyer a = new Applyer(array, 0, n, null);
   pool.invoke(a);
   return a.result;
 }

 class Applyer extends RecursiveAction {
   final double[] array;
   final int lo, hi;
   double result;
   Applyer next; // keeps track of right-hand-side tasks
   Applyer(double[] array, int lo, int hi, Applyer next) {
     this.array = array; this.lo = lo; this.hi = hi;
     this.next = next;
   }

   double atLeaf(int l, int h) {
     double sum = 0;
     for (int i = l; i < h; ++i) // perform leftmost base step
       sum += array[i] * array[i];
     return sum;
   }

   protected void compute() {
     int l = lo;
     int h = hi;
     Applyer right = null;
     while (h - l > 1 && getSurplusQueuedTaskCount() <= 3) {
       int mid = (l + h) >>> 1;
       right = new Applyer(array, mid, h, right);
       right.fork();
       h = mid;
     }
     double sum = atLeaf(l, h);
     while (right != null) {
       if (right.tryUnfork()) // directly calculate if not stolen
         sum += right.atLeaf(right.lo, right.hi);
       else {
         right.join();
         sum += right.result;
       }
       right = right.next;
     }
     result = sum;
   }
 }
Since:
1.7
Author:
Doug Lea
See Also:
Serialized Form

Constructor Summary
Constructor for subclasses to call.
Method Summary
protected abstract void
The main computation performed by this task.
protected final boolean
Implements execution conventions for RecursiveActions.
final Void
Always returns null.
protected final void
setRawResult(Void mustBeNull)
Requires null completion value.
Methods inherited from class java.util.concurrent.ForkJoinTask
adapt, adapt, adapt, cancel, compareAndSetForkJoinTaskTag, complete, completeExceptionally, fork, get, get, getException, getForkJoinTaskTag, getPool, getQueuedTaskCount, getSurplusQueuedTaskCount, helpQuiesce, inForkJoinPool, invoke, invokeAll, invokeAll, invokeAll, isCancelled, isCompletedAbnormally, isCompletedNormally, isDone, join, peekNextLocalTask, pollNextLocalTask, pollSubmission, pollTask, quietlyComplete, quietlyInvoke, quietlyJoin, reinitialize, setForkJoinTaskTag, tryUnfork
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Constructor Detail
RecursiveAction
public RecursiveAction
()
Constructor for subclasses to call.
Method Detail
compute
protected abstract void compute
()
The main computation performed by this task.

getRawResult
public final Void getRawResult
()
Always returns null.
Overrides:
getRawResult in class ForkJoinTask<Void>
Returns:
null always

setRawResult
protected final void setRawResult
(Void mustBeNull)
Requires null completion value.
Overrides:
setRawResult in class ForkJoinTask<Void>
Parameters:
mustBeNull - the value

exec
protected final boolean exec
()
Implements execution conventions for RecursiveActions.
Overrides:
exec in class ForkJoinTask<Void>
Returns:
true if this task is known to have completed normally

 Class 
Use 
SUMMARY: NESTED | FIELD | CONSTR | METHOD      DETAIL: FIELD | CONSTR | METHOD
FlexDoc/Javadoc 2.0
Demo Java Doc

Java API documentation generated with FlexDoc/Javadoc 2.0 using JavadocClassic 3.0 template set.
FlexDoc/Javadoc is a template-driven programming tool for rapid development of any Javadoc-based Java API documentation generators (i.e. doclets). If you need to customize your Javadoc without writing a full-blown doclet from scratch, FlexDoc/Javadoc may be the only tool able to help you! Find out more at www.flexdoc.xyz